

The NuMI Off-Axis Experiment

NuHorizons Fermilab 30 May 2003

Gary Feldman

Formalism

 Weak and mass eigenstates related by 3 angles and one complex phase:

$$\left| \Box_{i} \right\rangle = U \left| \Box_{n} \right\rangle$$
, where $(c_{ij} = \cos \Box_{ij}, s_{ij} = \sin \Box_{ij})$

$$U = \begin{bmatrix} 1 & 0 & 0 & c_{13} & 0 & s_{13}e^{\Box i\Box} & c_{12} & s_{12} & 0 \\ 0 & c_{23} & s_{23} & 0 & 1 & 0 & \Box s_{12} & c_{12} & 0 \\ 0 & \Box s_{23} & c_{23} & \Box s_{13}e^{i\Box} & 0 & c_{13} & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{\Box i\Box} \\ s_{12}c_{23} & c_{12}s_{23}s_{13}e^{i\Box} & c_{12}c_{23} & s_{12}s_{23}s_{13}e^{i\Box} & s_{23}c_{13} \\ s_{12}s_{23} & c_{12}c_{23}s_{13}e^{i\Box} & c_{12}s_{23} & s_{12}c_{23}s_{13}e^{i\Box} & c_{23}c_{13} \end{bmatrix}$$

Gary Feldman

NuHorizons at Fermilab

30 May 2003

2

Vacuum Oscillations

Matter effects: In vacuum,

$$i\hbar \frac{d}{dt} \left[\frac{m^2}{4E} \cos 2 \right] = H \left[\frac{m^2}{4E} \sin 2 \right] \left[\frac{m^2}{4E} \cos 2 \right]$$

$$= \frac{m^2}{4E} \sin 2 \left[\frac{m^2}{4E} \cos 2 \right]$$

$$P(\square_{e} \square \square_{x}) = \sin^{2} 2 \square \sin^{2} \frac{\square 1.27 \square m^{2} L}{E}$$

L is in km, and E is in GeV

Matter Oscillations

Matter effects: In matter □ 's interact differently

than \prod_{x} 's.

$$v_x$$
 v_y v_y v_z v_z

$$H = \begin{bmatrix} \frac{1}{2}m^2 & \cos 2 & \frac{1}{2}\sqrt{2}G_F \\ \frac{1}{4}E & \frac{1}{4}E & \frac{1}{4}E \end{bmatrix}$$

$$\frac{\frac{1}{2}m^2}{4E}\sin 2 \begin{bmatrix} \frac{1}{2}m^2 \\ \frac{1}{4}E & \frac{1}{4}E \end{bmatrix}$$

$$\sin^2 2 \square_m = \frac{\sin^2 2 \square}{(\cos 2 \square \square \sqrt{2} G_F \square_e E / \square m^2)^2 + \sin^2 2 \square}$$

What Do We Know?

What Do We Want to Know?

 Where we have measurements, we want to improve them.

$$[\sin^2 2 \square_1, \sin^2 2 \square_2, \square m_{12}^2, \square m_{23}^2]$$

Where we do not have measurements, we want to obtain them.

$$[\sin^2 2 \square_3, \operatorname{sign}(\square m_{23}^2), \square]$$

 We want to know if we have the right framework.

[/s, //decay, extra dimensions, CPT violation,etc.]

MINOS Layout

(Main Injector Neutrino Oscillation Search)

MINOS Far Detector

8m octagonal tracking calorimeter

486 layers of 1 in iron plates

4.1 cm-wide scintillator strips with WLS fiber readout, read out from both ends

- 8 fibers summed on each PMT pixel
- 25,800 m² (6.4 acres) of active detector planes
- Toroidal magnetic field < B > = 1.3 T
- Total mass 5.4 kT

Gary Feldman

NuHorizons at Fermilab

MINOS Near Detector

280 "squashed octagon" plates

 Same plate thickness, scintillator thickness and width as far detector

Target/calorimeter section: 120 planes

4/5 partial area instrumented

1/5 full area instrumented

Muon spectrometer section: 160 planes

4/5 uninstrumented

1/5 full area instrumented

Gary Feldman

NuHorizons at Fermilab

MINOS Energy Options

Different beam energies correspond to different horn currents and positions

Will start with low E beam for best sensitivity to match SK results

MINOS Physics Goals

- Verify dominant □ □ □ oscillations
 - □appearance is not necessary.
 - ☐ CC disappearance with no NC disappearance and no ☐ CC appearance ☐ ☐ ☐ ☐ Goscillations. There is no other possibility.
- Precise measurement of dominant $\prod m_{23}^2$ and $\sin^2 2 \prod_{23}$.
- Search for subdominant □ □ □ □ (sin²2□₁₃) and □ □ □ □ s oscillations.
- Study unconventional explanations: neutrino decay, extra dimensions, etc.

MINOS Physics Tools

- □ CC spectrum
 - Information from both rates and shape. The latter is independent of the near / far normalization.
- NC / CC ratio
 - Independent of the near / far normalization.
- □ CC appearance
 - Use topological criteria: fraction of energy in first few radiation lengths, shower asymmetry, etc.

NuMI Beam Intensity

- MINOS proposal calls for 2 yrs of running at 3.7x10²⁰ pot = 7.4x10²⁰ pot
- We are proposing that Fermilab spend ~10M\$/yr to upgrade the beam intensity to 7.2x10²⁰ pot by 2009, yielding 25x10²⁰ for a 5 yr run beginning in 2005.
- This can possibly be achieved by multibunch stacking in the MI and faster cycle times with increased magnet and RF power. Issues being studied by the Finley Committee.

MINOS CC Measurements

MINOS Sensitivity to

Gary Feldman

NuHorizons at Fermilab

MINOS Sensitivity to 🗓 🗓 🗓 vs. Systematic Errors

3 σ Discovery Potential

 $\Box m^2 = 0.0025 \text{ eV}^2$

Gary Feldman

NuHorizons at Fermilab

MINOS Sensitivity to at 90% CL

90% CL Exclusion

Gary Feldman

NuHorizons at Fermilab

MINOS Sensitivity to at 3 Discovery

Off-Axis Beams

- It is clear that the next generation of experiments will concentrate on $\Box_e \Box \Box_\Box$ oscillations -- needed for
 - $\sin^2 2 \square_{13}$
 - sign($\square m_{23}^2$)

Off-Axis Rationale

- Want low-energy narrow-band beams at $\Box m_{13}^2 \Box \Box m_{23}^2$ oscillation maximum:
 - □ appearance maximum
 - ☐ CC disappears
 - Higher-energy NC disappears
- Want detectors optimized for □_e detection
- Want increases in beam flux times detector mass
- Off-axis Experiment Proposal

Off-Axis Kinematics

Gary Feldman

NuHorizons at Fermilab

Off-Axis Spectrum (No oscillations)

Gary Feldman

NuHorizons at Fermilab

Off-Axis Physics (In Vacuum)

- Assume that we will always work at the $\Box m_{13}^2 \Box \Box m_{23}^2$ oscillation maximum, so that $1.27 \Box m_{13}^2 L / E = \Box / 2 + n\Box$.
- Assume that $\sin^2 2 \square_{23} \square \sin^2 2 \square_{12} \square 1$.
- Then the leading term for $\Box_{\Box} \Box \Box_{\Box}$ oscillations is $P_{vac}(\Box_{\Box} \Box \Box_{\Box}) \Box \frac{1}{2} \sin^2 2\Box_{\Box}$

Off-Axis/Super Beam Physics (In Matter)

In matter,

$$P_{mat}(\square_{\square} \square \square_{e}) \square \square_{e} \square \pm \frac{2E}{E_{R}} \square P_{vac}(\square_{\square} \square \square_{e}),$$

where the top sign is for neutrinos with normal mass hierarchy and antineutrinos with inverted mass hierarchy.

$$E_R = \frac{\prod m_{13}^2}{2\sqrt{2}G_F \prod_e} \prod 11 \text{ GeV for the earth's crust.}$$

□ ~30% effect for NuMI, ~10% effect for J-PARC at the first oscillation maximum.

Off-Axis Physics (CP Violation)

The next leading term is CP violating:

$$P_{CP}(\square_{\square} \square \square_{e}) \square \pm J \sin \square \frac{1.27 \square m_{12}^{2} L}{E},$$

where $J = \cos \square_{13} \sin 2\square_{12} \sin 2\square_{13} \sin 2\square_{13}$ and where the top sign is for neutrinos and the bottom sign is for antineutrinos.

 For a single set of measurements, there can be ambiguities between the matter effect and CP violation.

NuMI Off-Axis Neutrino vs. Antineutrino (1)

NuMI Off-Axis Neutrino vs. Antineutrino (2)

CP Asymmetries are Large

from S. Parke

Gary Feldman

NuHorizons at Fermilab

Ambiguities in sin²(2₁₃) Measurement

Gary Feldman

NuHorizons at Fermilab

Determining the Mass Hierarchy

- The effect is binary.
- Three ways of resolving it:
 - Run at both 1st and 2nd oscillation maxima (2nd maximum has 1/3 matter effect and 3 CP effect, but rate at 2nd maximum very low)
 - Run neutrinos and antineutrinos (antineutrinos have ~1/3 the rate)
 - Run at two different baselines -- i.e., take advantage of the complementarity of NuMI and J-PARC (~3 x the matter effect at NuMI) or the complementarity of NuMI and a reactor experiment.

$(E/L)_{NuMI} \le (E/L)_{J-PARC}$ for Complementarity

Determining the CP Phase

- Since [] depends only on L/E at each oscillation maximum, it must be determined by either
 - Energy dependence or
 - Antineutrino run

Where should the off-axis experiment be sited?

Want a site about 10 km off the beam line, so there is a large ellipse of possible sites.

LTV Site 712 km

Former surface mining site, no longer used.

Large site, 25 by 5 miles.

Road and rail access. Power, fiber, and cell phone.

Gary Feldman

NuHorizons at Fermilab

Longer Baseline Sites

All sites have power and road access.

Buyck and Vermillion Lake have a nearby gas station and bar.

Gary Feldman

NuHorizons at Fermilab

Detector Technology Choice

- Most troublesome backgrounds are asymmetric □⁰ decays from NC and □□ CC events where the muon is not detected.
- H₂O Cerenkov detectors do not provide optimum rejection for E > 1 GeV.
- Best rejection is given by liquid argon detectors, but required R&D is not compatible with the envisioned time scale.
- Next best option is highly-segmented (~1/3 X₀) medium-Z sandwich detectors.

Electron Track

Hits per plane > 1

30 May 2003

Muon track

Hits per plane ~1

30 May 2003

NC with leading □0

Two tracks with different starting points leading to a "gap"

Detail of NC with leading \square^0

Backgrounds: Beam []_e

- 54% of eventual background
- Mostly from muon decay
 - Calculable from near detector
 □ CC events
 - Measurable in the near detector

Backgrounds: NC

- 34% of eventual background
- Rejected by a likelihood analysis based on topological parameters

Signal Likelihood

NC Likelihood

Gary Feldman

NuHorizons at Fermilab

30 May 2003

Backgrounds: 🗓 CC

- 12% of eventual background
- Hugely overestimated in the near detector
- Need a good understanding of NC/CC ratios and efficiencies
- Can study misidentification efficiency by removing identified muons from CC events.

Backgrounds: [] CC

Negligible since we work below []threshold.

Detector Technology: Absorber

- Consensus to use particle board
 - Structural material
 - Manufactured in 24 by 8 ft lengths
 - Density 0.6 g/cm³, but can be increased
 - Cost \$0.31/kg
 - There are thermal and hydroscopic issues that appear solvable.

Detector Technology: Active Elements

- Scintillators (à la MINOS) and RPCs (à la BELLE) under consideration.
- Scintillators
 - Well-understood technology
 - One-ended digital readout (cheap electronics)
 - 64-pixel PMT or APD photon detectors
- RPCs
 - Reliable (No failures at BELLE in 5 yrs.)
 - Inexpensive
 - X and Y readout on each chamber

Detector Packaging

- Monolithic and containers being considered
- Containers
 - Pre-engineered
 - All assembly at detector factories
 - Con: Extra gaps and material

How Do We Decide These Issues?

Committees

- TESCOE: TEchnical Steering Committee for the Off-axis Experiment (GF chair)
- CostCom: Costing Committee (Gina Rameika chair)

Criterion:

- For a fixed physics goal, we want to recommend the reliable technologies that are the least expensive.
- We are studying the optimizations and engineering issues.

Timetable: History and Short Term

- LOI submitted August 2002 (P929)
 - Kind words of support from the PAC
- Workshops:
 - Stanford January 2003
 - Argonne April 2003
 - Fermilab July 10-12, 2003
 - Fermilab September 11-13, 2003
- Off-axis concept presented to the HEPAP HEP Facilities Panel, February 2003
 - Ranked "Important"
- Intention to submit a proposal for the November 2003 PAC meeting.

Timetable: Possible Longer Term Schedule

- June 2004: PAC approval for a near detector
- 2004-2006 Near detector construction and running and far detector engineering
- 2006 Start of far detector construction
- 2009 Start of full run
- Note: The beam will exist and the detector is modular. The experiment can start prior to full completion.

Signal and Backgrounds: NuMI Off-Axis and J-PARC

$$\sin^2(2|_{13})_{eff} = 0.1$$

	NuMI Off-axis 50 kton, 85% eff, 5 years, 4x10 ²⁰ pot/y		JHF to SK Phase I, 5 years	
	a	After cuts	╗	After cuts
ν_{μ} CC (no osc)	28348	6.8	10714	1.8
NC	8650	19.4	4080	9.3
Beam v_e	604	31.2	292	11
Signal (Δm^2_{23} =2.8/3 x 10 ⁻³ , NuMI/JHF)	867.3	307.9	302	123
FOM (signal/√bckg)		40.7		26.2

Gary Feldman

NuHorizons at Fermilab

30 May 2003

3 \square Discovery Limit for $\sin^2(2\square_{13})_{eff}$

- Assume $\lim_{23}^{2} = 2.8 \times 10^{-3} \text{ eV}^2$ and 5% systematic error on the backgrounds
- 5 yr at $4x10^{20}$ pot/yr x $\sin^2(2_{13})_{eff} \ge 0.008$
- 5 yr at $7.2x10^{20}$ pot/yr x $\sin^2(2_{13})_{eff} \ge 0.006$

Conclusion

 The Off-Axis Experiment will be a powerful second phase in the Fermilab neutrino program.